shainet

3.0.1 Latest release released

SHAInet - A neural network in pure Crystal

SHAInet (Super Human Artificial Intelligence Network) is a neural network library written in pure Crystal. Originally created for biologically inspired neural network research, it has evolved into a general-purpose library for training and running neural networks, with a focus on simplicity and ease of use.


Features

  • CPU and GPU (CUDA) support
  • Multiple layer types and activation functions
  • Various training algorithms (SGD, Adam, iRprop+, etc.)
  • Streaming data support for large datasets
  • PyTorch and HuggingFace model import
  • Transformer and modern NLP support

Installation

Add to your shard.yml:

dependencies:
  shainet:
    github: NeuraLegion/shainet

GPU Acceleration (Optional)

  • Install the CUDA Toolkit and ensure libcudart.so and libcublas.so are in your LD_LIBRARY_PATH.
  • SHAInet will auto-detect CUDA and use GPU acceleration if available.
  • For cuDNN support, ensure libcudnn.so is also in your LD_LIBRARY_PATH.
  • Compile the project with -Denable_cuda

Check CUDA availability:

require "shainet"
puts "CUDA available: #{SHAInet::CUDA.available?}"
puts "CUDA version: #{SHAInet::CUDA.version || "unknown"}"

Optimized GPU Setup

For best performance (especially with transformers):

git clone https://github.com/NeuraLegion/shainet.git
cd shainet
make install
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$(pwd)
make test

To build kernels manually:

./build_cuda_kernels.sh

Device management

Layers such as LayerNorm allocate workspace matrices on the first forward pass and reuse them across iterations. Call to_gpu! or to_cpu! only when switching devices. Repeated calls without a device change keep the existing workspaces to avoid unnecessary allocations.


Usage

See examples/ for more.

XOR Example

require "shainet"

data = [
  [[0, 0], [0]],
  [[1, 0], [1]],
  [[0, 1], [1]],
  [[1, 1], [0]],
]

net = SHAInet::Network.new
net.add_layer(:input, 2)
net.add_layer(:hidden, 2)
net.add_layer(:output, 1)
net.fully_connect

net.train(data: data,
  training_type: :sgdm,
  cost_function: :mse,
  epochs: 5000,
  log_each: 1000)

puts net.run([0, 1])

Iris Classification

data = SHAInet::Data.new_with_csv_input_target("iris.csv", 0..3, 4)
train, test = data.split(0.67)

iris = SHAInet::Network.new
iris.add_layer(:input, 4)
iris.add_layer(:hidden, 5)
iris.add_layer(:output, 3)
iris.fully_connect

iris.train_batch(
  data: train,
  training_type: :adam,
  cost_function: :mse,
  epochs: 2000,
  log_each: 100)

puts iris.test(test)

Streaming Data

Efficiently train on large datasets:

# Buffer at most 1,024 lines and shuffle each chunk
stream = SHAInet::StreamingData.new(
  "data.txt",
  shuffle: true,
  chunk_size: 1024,
  gpu_batches: true)

net = SHAInet::Network.new
net.add_layer(:input, 2, :memory, SHAInet.sigmoid)
net.add_layer(:hidden, 3, :memory, SHAInet.sigmoid)
net.add_layer(:output, 1, :memory, SHAInet.sigmoid)
net.fully_connect

net.train(
  data: stream,
  training_type: :sgdm,
  epochs: 5000,
  mini_batch_size: 2,
  log_each: 1000)

Advanced

  • See examples/babylm_transformer.cr for a transformer language model.
  • Import PyTorch models with net.load_from_pt("model.pt").
  • Import HuggingFace GPT weights directly from pytorch_model.bin.
a = SHAInet::SimpleMatrix.tensor(1, 2)
a[0, 0] = SHAInet::Autograd::Tensor.new(2.0)
a[0, 1] = SHAInet::Autograd::Tensor.new(3.0)

w = SHAInet::SimpleMatrix.tensor(2, 1)
w[0, 0] = SHAInet::Autograd::Tensor.new(4.0)
w[1, 0] = SHAInet::Autograd::Tensor.new(5.0)

out = a * w
out[0, 0].as(SHAInet::Autograd::Tensor).backward

learning_rate = 0.1
w.rows.times do |i|
  w.cols.times do |j|
    t = w[i, j]
    w[i, j] = SHAInet::Autograd::Tensor.new(t.data - learning_rate * t.grad)
    t.grad = 0.0
  end
end

Contributing

  1. Fork https://github.com/NeuraLegion/shainet
  2. Create a feature branch
  3. Commit and push your changes
  4. Open a Pull Request

Contributors


shainet:
  github: NeuraLegion/shainet
  version: ~> 3.0.1
License MIT
Crystal 1.6.2

Authors

Dependencies 0

Development Dependencies 1

  • ameba
    {'github' => 'veelenga/ameba'}

Dependents 0

Last synced .
search fire star recently